Apparent Attenuation of Shear Waves Propagating through a Randomly Stratified Anisotropic Medium
نویسندگان
چکیده
Waves propagating through heterogeneous media experience scattering that can convert a coherent pulse into small incoherent fluctuations. This may appear as attenuation for the transmitted front pulse. The classic O’Doherty-Anstey theory describes such a transformation for scalar waves in finely layered media. Recent observations for seismic waves in the earth suggest that this theory can explain a significant component of seismic attenuation. An important question to answer is then how the O’Doherty-Anstey theory generalizes to seismic waves when several wave modes, possibly with the same velocity, interact. An important aspect of the O’Doherty-Anstey theory is the statistical stability property, which means that the transmitted front pulse is actually deterministic and depends only on the statistics of the medium but not on the particular medium realization when the medium is modeled as a random process. It is shown in this paper that this property generalizes in the case of elastic waves in a nontrivial way: the energy of the transmitted front pulse, but not the pulse shape itself, is statistically stable. This result is based on a separation of scales technique and a diffusion-approximation theorem that characterize the transmitted front pulse as the solution of a stochastic partial differential equation driven by two Brownian motions.
منابع مشابه
Shear Waves Through Non Planar Interface Between Anisotropic Inhomogeneous and Visco-Elastic Half-Spaces
A problem of reflection and transmission of a plane shear wave incident at a corrugated interface between transversely isotropic inhomogeneous and visco-elastic half-spaces is investigated. Applying appropriate boundary conditions and using Rayleigh’s method of approximation expressions for reflection and transmission coefficients are obtained for the first and second order approximation of the...
متن کاملAnalysis of Plane Waves in Anisotropic Magneto-Piezothermoelastic Diffusive Body with Fractional Order Derivative
In this paper the propagation of harmonic plane waves in a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative is studied. The governing equations for a homogeneous transversely isotropic body in the context of the theory of thermoelasticity with diffusion given by Sherief et al. [1] are considered as a special case. It is found that three types of...
متن کاملInstability of oscillations in the flow moving through a random medium as the counterpart of the localization of waves in a passive random medium
This paper deals with waves propagating in a one-dimensional flow moving through a randomly layered medium. The flow velocity is assumed to be greater than the group velocity of the waves in the reference system of the flow. As a result, in the laboratory reference system, all the waves propagate in a single direction. Amplitudes of these waves moving through a randomly inhomogeneous medium are...
متن کاملEffects of shear and bulk viscosity on head-on collision of localized waves in high density compact stars
Head on collision of localized waves in cold and dense hadronic matter with and without shear and bulk viscosities is investigated. Non-relativistic dynamics of propagating waves is studied using the hydrodynamics description of the system and suitable equation of state. It will be shown that the localized waves are described by solutions of the Burgers equation. Simulations show that the propa...
متن کاملTHE EFFECT OF PURE SHEAR ON THE REFLECTION OF PLANE WAVES AT THE BOUNDARY OF AN ELASTIC HALF-SPACE
This paper is concerned with the effect of pure shear on the reflection from a plane boundary of infinitesimal plane waves propagating in a half-space of incompressible isotropic elastic material. For a special class of constitutive laws it is shown that an incident plane harmonic wave propagating in the considered plane gives rise to a surface wave in addition to a reflected wave (with angle o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015